Model Specification
We employed logistic regression to model the probability of loan approval based on predictor variables. The logistic regression model is defined as:
\log\left(\frac{P(Y = 1)}{1 - P(Y = 1)}\right) = \beta_0 + \sum_{i=1}^{p} \beta_i X_i,
where Y is the loan approval status, \beta_0 is the intercept, \beta_i are the coefficients, and X_i are the predictor variables.
The fitted logistic regression model is:
\begin{align*}
\log\left(\frac{P(\text{loan\_status} = 1)}{1 - P(\text{loan\_status} = 1)}\right) = & \beta_0 + \beta_1 \cdot \text{person\_income} + \beta_2 \cdot \text{person\_home\_ownership} \\
& + \beta_3 \cdot \text{person\_emp\_length} \\
& + \beta_4 \cdot \text{loan\_intent} + \beta_5 \cdot \text{loan\_amnt} + \beta_6 \cdot \text{loan\_int\_rate} \\
& + \beta_7 \cdot \text{loan\_percent\_income} + \beta_8 \cdot \text{cb\_person\_default\_on\_file} \\
& + \beta_9 \cdot \text{cb\_person\_cred\_hist\_length} + \beta_{10} \cdot \text{credit\_score}.
\end{align*}